16
Jun

Accurately Predicting the Behavior of Pneumatic Tires

When developing the sub-systems of a vehicle, compromises have to be made among several contrasting objectives. On one hand, one wants to set all sub-systems – such as suspensions – so that they allow efficient and safe handling of the vehicle. On the other hand, comfort cannot be sacrificed too much. Being the support of the vehicle and providing forces necessary to control it, pneumatic tires are one of the most important components. However, it is very challenging to model them due to both their complicated composition and the materials used in their manufacturing process. On top of that, the modeling is done by suppliers and an in depth understanding of the interaction with the vehicle must be attained.

15
Jun

Structural Analysis and Model Validation for the James Webb Space Telescope ISIM Structure

The James Webb Space Telescope is a highly sensitive instrument that is positioned using a precise optical metering support structure. This supporting structure is made from composites to reduce thermal expansion effects while reducing weight. The instrument and structure are subjected to temperatures ranging from ambient during launch to cryogenic temperatures while in orbit. Dynamic and static loads are encountered during launch and in operation respectively.

14
Jun

Nonlinear Analysis in MSC Nastran to Reduce Design Bottlenecks

Sporadic use of advanced finite element analysis (FEA) software, such as nonlinear analysis by design engineers, can result in either excessive refresher training time or a bottleneck while in the queue for an analyst. The cause is a result of different types of solvers requiring different models. Commercially available translators can help, but still require significant amounts of cleanup. However, by integrating solvers in MSC Nastran’s SOL 600, the same model in the familiar MSC Nastran format can be used for both liner and MSC Marc nonlinear analysis.

10
Jun

Reducing the Product Development Time of a Rotary Cutter System Through Simulation

In the agricultural and heavy machinery industries, durability and strength are some of the most important indicators of quality. Maintaining high levels in these areas requires the application of many different tests and assessments to the end product. However, one of the most time-consuming parts of the production is the lengthy process of building physical prototypes, testing them for durability, then redesigning several parts and starting all over again. This process can significantly extend the time it takes to get a product to market. This was the case for John Deere Welland Works while developing a 20-foot rotary cutter system.

7
Jun

Impact on a Beam

Rhodia Engineering Plastics is one of the largest suppliers for polyamide engineering plastics. They faced challenges in supporting their customers in the design of polyamide parts, taking into account the influence of fiber orientation for reinforced polyamide material, and providing the best material data possible to support simulation technologies.   SOLUTION • Calibration of a …

6
Jun

Where’s the Dirt? – Use Realistic Material Loads in Adams

The world of heavy equipment is full of big machinery digging and moving dirt. Millions of tons of bulk material are moved every day by excavators, bull dozers, ploughs and trucks. The challenge faced by engineers who are designing such equipment is to understand how their machines will perform in the material environment they operate in. 

Page 9 of 16