No More Guessing! – Enhanced Design Insight Using the EDEM-Adams Coupling

In this final blog of our Adams-EDEM co-simulation series, Darren Simoni from DSIM Technologies explains how EDEM and Adams have been used during the design of a skid-steer loader to increase the accuracy of system level simulation using less time and effort than traditional load estimation methods. 


Multi-scale material modeling for additive manufacturing

While additive manufacturing of reinforced polymers is appealing and increasingly considered for production of actual parts, major obstacles must be overcome by engineers. Dimensional accuracy of the part must obey to strict tolerances that may not be met due to thermally induced part distortion or poor surface roughness. On the material side, an anisotropic material behavior is brought in by the specific 3D printed layered architecture and oriented reinforcements. This process-induced material behavior make the part mechanical response challenging to predict.

Therefore, Digimat, the material modeling platform, can offer you a solution to overcome your challenges. 


Coupled Powertrain and Vehicle Analysis

Today's vehicle and powertrain engineers face increasing challenges to meet fuel economy and drive quality targets, while at the same time keep vehicle cost reasonable. Many of the new engine technologies designed to improve fuel economy create difficulties for the noise, vibration, and harshness (NVH) engineer, whose job it is to assure a certain level of comfort for the occupants.


Dig the Dirt! – Application Examples using Adams-EDEM Co-Simulation

In my previous blogs I introduced the Adams-EDEM coupling, and explained how it works. In this post I want to share with you two examples of the Adams-EDEM coupling in action!


Manufacturing Simulation Reduces Development Costs and Time in Cold Forming Tool Design

Omni-Lite Industries is an advanced material company. They recently designed a new part that was exhibiting a unique material flow. The part was cold formed out of 1100 aluminum material.

The initial tool design was completed and reviewed using the Simufact.forming simulation. Upon initial review, everything seemed to be acceptable, with the exception of the volume of material in the flange of the part. The second station trap extrusion die radius was then reduced in order to accommodate the material volume requirements.


Impact on a Stiffener for Lower B-Pillar

L&L Products is a provider of individual and innovative engineering solutions to the automotive industry and is known for superior engineering through the use of state-of-the-art simulation methods in the product development chain. However, they faced the challenges in moving towards greener technology by replacing classical metal design with composite structures. The purpose of transitioning was to utilize the outstanding performance of composite materials. However, this presented difficulties, mainly with predicting the injection molding process and achieving a high-quality prediction of the impact on a short fiber reinforced stiffener beam.  

Page 1 of 18